DWARVES
FOUNDATION

Strategy

One of the behavior patterns

Problem statement

e A prestigious restaurant has a secret cookbook. The book contains many recipes
from many cuisine(asian, europe, etc...). Only the head cook are allowed to

view/change the cookbook.

A < EE 25°
= T:D? A

DWARVES
FOUNDATION

Problem statement

e To keep up with the growth, the restaurant hires more cooks and head cooks
but still want to keep a single secret cookbook. As result, head cooks fighting
with each others to take view/edit priority during rush hours. The restaurant can

not copy the cookbook to avoid leaking important trade secret

DWARVES
FOUNDATION

Problem statement

e We devise a strategy to divide the cookbook into multiple parts. Each part
responsible for a cultural cuisine. The head cooks with specific cuisine specialty

can only view/edit their respective parts.

(: | | :)
DWARVES ‘!»
FOUNDATION 0
I

Problem statement

e We devise a strategy to divide the cookbook into multiple parts. Each part
responsible for a cultural cuisine. The head cooks with specific cuisine specialty
can only view/edit their respective parts.

func main() {
ctx := context.Background()

type HeadCook interface {
Cook(dish string)

dish := fmt.Sprintf("%v", ctx.Value("dish"))

cuisine := getCuisineFromDish(dish)

switch cuisine {

case "asian":
AsianHeadCook.Cook(nil, dish)

type AsianHeadCook HeadCook Casel'atrope-:

[\j/pc EuropeHeadCOok HeadCook EuropeHeadCook.Cook(nil, dish)
default:

type MasterHeadCook HeadCook MasterHeadCook.Cook(nil, dish)

L9
s

DWARVES
FOUNDATION

Strategy

e Strategy is dividing a class that does something
specific in a lot of different ways into strategies, each
strategy is created as a solution to the expected

provided context.

DWARVES
FOUNDATION

Strategy

e Strategy divides the cookbook(class) which is followed
to cook food(something specific) into parts based on

geological cuisines(different ways).

DWARVES
FOUNDATION

Strategy

e \We can divide a class into strategies, by levels of

abstraction and The behaviours for specific contexts.

DWARVES
FOUNDATION

Strategy

e FindWay(from, to, vehicle).
o FindWayLand(from, to, vehicle).
m FindWayCar(from, to, vehicle).
m FindWayBus(from, to, vehicle).
o FindWayAir(from, to, vehicle).
o FindWaySea(from, to, vehicle).

DWARVES
FOUNDATION

Strategy

After defining the strategies, we have the client select the

appropriate strategy based on the provided context

DWARVES
FOUNDATION

10

Go example

type CalculateStrategy int ce {
PerformCalculation(x, y int) int

type AddStrategy struct{}

func NewAddCalculateStrategy() CalculateStrategy {

return AddStrategy{}

func (AddStrategy) PerformCalculation(x, y int) int {
return x + vy
type MinusStrategy struct{}

func NewMinusCalculateStrategy() CalculateStrategy {
return MinusStrategy{}

func (MinusStrategy) PerformCalculation(x, y int) int {
return x -y

DWARVES
FOUNDATION

e Operator string

OperatorAdd Operator = "add"
OperatorMinus Operator = "minus"

main() {
operator := 0s.Args[1]

X, err := strconv.Atoi(os.Args([2])
if err != nil {

log.Fatalln(err)

y, err := strconv.Atoi(os.Args[3])
if err != nil {
log.Fatalln(err)

r result int

witch operator {
case string(OperatorAdd):

result = NewAddCalculateStrategy().PerformCalculation(x, y)
case string(OperatorMinus):

result = NewMinusCalculateStrategy().PerformCalculation(x, y)
default:

log.Fatalln("Unsupported operation")
}

log.Printf("Result of [%s] operation of %d, %d = %d\n", operator, x, vy,

result)

11

Go example

2024/06/13 09:33:34 Result of [add] operation of 2, 4

- X go run strategy/main.go add 2
- X go run strategy/main.go minus

2024/06/13 09:36:17 Result of [minus] operation of 2, 4

- X go run strategy/main.go divide 2 4
2024/06/13 09:36:23 Unsupported operation

DWARVES
FOUNDATION

12

Why use strategy

Strategy patterns give each the abilities to:
- Create and cherry-pick between strategies.
- Each strategy is independent of each other.

- Client select the strategy so can isolate the implementation details of a

strategy from the code that uses it

DWARVES
FOUNDATION

13

Notes

Before using the strategy pattern:

- To not overcomplicate the program if the context are rarely change and

the strategies are few and simple.
- The client must aware the differences between strategies to be able to

select a proper one.

DWARVES
FOUNDATION

14

DWARVES
FOUNDATION

HOI & DAP

ad < | \
./j \N:‘-.

Q&A

15

References

https://refactoring.guru/design-patterns/strategy.

DWARVES
FOUNDATION

16

