DWARVES
FOUNDATION

Prototype

One of the creational patterns




Problem statement

e We want to use a copy of the access :
Runtime

object but the config only initialize at

runtime. It fields and methods are also

privated. T

Access object [~ —
\ \4:\
I
@ - maxRetry : O
I
I

- batchSize
- partition()

DWARVES
FOUNDATION




Prototype

e Request a Clone of from the object(Prototype) without

the need to look up it class and implementation.

&
i

3
{
{

!

(g
(<

DWARVES
FOUNDATION



Prototype

Runtime

T
Access

object |

- | :
) @ \:\
- maxRetry : O
I
|

</> - batchSize
- partition()

DWARVES
FOUNDATION




Go example

package counter
e Given a Counter interface. T —
Count() int

Main will select the counter

type normalCounter struct {

implementation at runtime ot i

_/counter

func (a xnormalCounter) Count() int {
a.count++

return a.count func main() {

isDefected := true
pe defectedCounter str
count int counter := counter.NewCounter(isDefected)

func (a *defectedCounter) Count() int {
a.count++
return -a.count

NewCounter(isDefected bool) Counter {
if isDefected {
return &defectedCounter{
'}\.
return &ormalCounter{}

DWARVES
FOUNDATION



Go example

package store

e \We have a store that will use

. import (
Counter interface to manage “log"
/counter"
inventory )
e Each inventory must have a el bl
phoneInventory counter.Counter
H computerInventory counter.Counter
separate counter instance y

func (s store) AddPhone() {
log.Printf("number phone total: %d\n", s.phoneInventory.Count())

}

func (s store) AddComputer() {
log.Printf("number computer total: %d\n", s.computerInventory.Count())

}

DWARVES 6
FOUNDATION



package store

GO example func NewStore(counter counter.Counter) store {

phoneCounter := counter
computerCounter := counter

e The store can not decide the
return store{

counter instance itself and phoneInventory: phoneCounter,

computerInventory: computerCounter,

must rely on main to provide

the counter instance at

age main
runtime.
func main() {
isDefected := true
counter := counter.NewCounter(isDefected)
store := store.NewStore(counter)
for i :=0; i < 2; i++ {
store.AddPhone()
}
DWARVES for i :=0; i <1; i++ {
B FOUNDATION store.AddComputer()

}




Go example

e So at runtime, both phone and computer inventory are using the

same counter instance, output the incorrect result.

isDefected = false isDefected = true

number phone total: 1 number phone total: -1

number phone total: 2 number phone total: -2
number computer total: 3 number computer total: -3

DWARVES
FOUNDATION



Go example

e We add clone() to Counter to replicate the prototype instance and update Store

package counter

type Counter interface {
Count() int
Clone() Counter

}

func (a *normalCounter) Clone() Counter {
return &ormalCounter{}
}

func (a *defectedCounter) Clone() Counter {
return &ormalCounter{
count: 100,

1
5

DWARVES
FOUNDATION

package store

func NewStore(counter counter.Counter) store {
phoneCounter := counter.Clone()
computerCounter := counter.Clone()

return store{
phoneInventory: phoneCounter,
computerInventory: computerCounter,




Go example

e Prototype cloned runtime outputs:

isDefected = false isDefected = true

number phone total: 101
number phone total: 102

number phone total:

number phone total: 2
number computer total: 1

number computer total: 101

DWARVES 10
FOUNDATION



